sImple CCTV with RPi 4 and Google coral
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 

99 lines
4.0 KiB

import configparser
import cv2
import os
import time
from discord_webhook import DiscordWebhook, DiscordEmbed
import logging
from datetime import datetime
from pycoral.adapters.common import input_size
from pycoral.adapters.detect import get_objects
from pycoral.utils.dataset import read_label_file
from pycoral.utils.edgetpu import make_interpreter
from pycoral.utils.edgetpu import run_inference
def main():
last_time = datetime.now()
time.sleep(5)
webhook = DiscordWebhook(url=config["DEFAULT"]["url"])
labels=config["DEFAULT"]["default_labels"]
model=config["DEFAULT"]["default_model"]
threshold=float(config["DEFAULT"]["default_threshold"])
top_k= int(config["DEFAULT"]["top_K"])
grace_time= int(config["DEFAULT"]["grace_time"])
stream=config["DEFAULT"]["default_stream"]
dump_path=config["DEFAULT"]["dump_path"]
logging.warning('Loading {} with {} labels.'.format(model, labels))
interpreter = make_interpreter(model)
interpreter.allocate_tensors()
labels = read_label_file(labels)
inference_size = input_size(interpreter)
cap = cv2.VideoCapture(stream)
while cap.isOpened():
ret, frame = cap.read()
if not ret:
break
cv2_im = frame
cv2_im_rgb = cv2.cvtColor(cv2_im, cv2.COLOR_BGR2RGB)
cv2_im_rgb = cv2.resize(cv2_im_rgb, inference_size)
run_inference(interpreter, cv2_im_rgb.tobytes())
objs = get_objects(interpreter,threshold)[:top_k]
cv2_im,alarm,message = detect_and_alarm(cv2_im, inference_size, objs, labels,threshold)
#print(alarm,message)
if alarm and is_time(last_time,grace_time):
last_time=datetime.now()
logging.warning("people alarm",last_time)
#im_resize = cv2.resize(cv2_im, (640, 480))
is_success, im_buf_arr = cv2.imencode(".jpg", cv2_im)
byte_im = im_buf_arr.tobytes()
webhook.add_file(file=byte_im,filename='capture.png')
embed = DiscordEmbed(title='Detected', description=message, color='ff2345')
embed.set_image(url='attachment://capture.png')
webhook.add_embed(embed)
response = webhook.execute(remove_embeds=True)
logging.debug(response)
if config["DEFAULT"]["DUMP_VIDEO"]=="True":
os.system(f"ffmpeg -i {stream} -acodec copy -vcodec copy -t {grace_time} {dump_path}record_{last_time.strftime('%d-%m-%Y_%H-%M-%S')}.mp4 ")
if config["DEFAULT"]["CV_DEBUG"]=="True":
cv2.imshow('frame', cv2_im)
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
def detect_and_alarm (cv2_im, inference_size, objs, labels,threshold):
height, width, channels = cv2_im.shape
scale_x, scale_y = width / inference_size[0], height / inference_size[1]
for obj in objs:
if obj.id == 0 and obj.score>threshold*1.09:
bbox = obj.bbox.scale(scale_x, scale_y)
x0, y0 = int(bbox.xmin), int(bbox.ymin)
x1, y1 = int(bbox.xmax), int(bbox.ymax)
percent = int(100 * obj.score)
label = '{}% {}'.format(percent, labels.get(obj.id, obj.id))
cv2_im = cv2.rectangle(cv2_im, (x0, y0), (x1, y1), (0, 255, 0), 2)
cv2_im = cv2.putText(cv2_im, label, (x0, y0+30),
cv2.FONT_HERSHEY_SIMPLEX, 1.0, (255, 0, 0), 2)
cv2_im = cv2.putText(cv2_im, "ALARM !!!!", (10,30),
cv2.FONT_HERSHEY_SIMPLEX, 1.0, (0, 0, 255), 2)
return cv2_im,True,f'ALARM ! PERSON detected {round(obj.score,1)*100}'
return cv2_im,False,"OKAY"
def is_time(last_time,threshold):
delta=int((datetime.now()-last_time).total_seconds())
logging.debug(delta,last_time,threshold,delta >= threshold)
return delta >= threshold
if __name__ == '__main__':
config = configparser.ConfigParser()
configFilePath = '/home/pi/picoral_cctv/cctv.ini'
config.read(configFilePath)
main()